
THINGS ARE SELDOM WHAT THEY SEEM - 

CHRISTIAAN HUYGENS, THE PENDULUM  AND THE CYCLOID 

by Alan Emmerson 

In December 1656,  Dutch mathematician and scientist Christiaan Huygens 1 invented 

what is regarded as the first pendulum regulated clock 2 and he had  Salomon 

Hendrikszoon Coster build an example early in 1657, or so we are told.  Huygens was 28 

years old. 

At about the same time, we are also told, Huygens became aware that if the amplitude 

of the pendulum’s swing changed, the time of swing would also change - the pendulum 

was not isochronous.    

The clocks built by Coster and several drawings attributed to Huygens, clearly show 

that they attempted to incorporate features in their clocks to alter the path of the pendulum 

bob to overcome this problem. Specifically, there were  clocks  which had  curved metal 

plates,  now known as “chops”, on either side of the pendulum suspension. These were  

placed so that the suspension thread could wrap around them over an arc of about 50°  

either side of the rest position. The path followed by the pendulum bob was therefore by 

definition an involute of the shape of the chops. 

 It is said that Huygens deduced that, if the chops were cycloidal, the bob of a pendulum would swing 

along a cycloidal  path, rather than the  circular arc of the simple pendulum,  and the pendulum would then 

be isochronous. 

 
 

Figure 1 Huygens’ Chops       Figure 2.  Cycloid and Involute 

 

Since being unexpectedly credited 3 with “discovering” something which I thought was self evident, that 

Huygens’ isochronous cycloidal principle would not work with a pendulum having rigid components,  I 

have become intrigued by the story of Huygens and the cycloid. Unfortunately, the popular twentieth 

century secondary sources in clocks and the history of science I have read are unconvincingly perfunctory, 

vague or ambiguous and do not seem to  withstand scrutiny.  It is common to find, for example, casual 

 



 2 

assertions that the chops on a particular clock were fitted to make the pendulum bob swing in a cycloidal 

arc. The Rijksmuseum voor de Geschiedenis der Natuurwetenschapen in Leiden has a clock  attributed to 

Huygens/Coster with allegedly cycloidal chops and claims  that it was made in 1657 and that it is the oldest 

pendulum clock. 4 Yet Richard  Good  FBHI5  says that Huygens did not discover the anisochronism until 

December 1659. Good says that in the same year Huygens    proved that the pendulum should swing  along a  

cycloid, and that cycloidal chops were fitted to all later clocks. Haswell 6 says that all happened in 1665. 

Coster died at the end of 1659. Like a similar clock at The Time Museum, Rockford, Illinois, the 

Rijksmuseum clock is spring driven whereas the  clock Huygens described in 1658 as his invention was 

weight driven. Landes 7  writes that Huygens arrived at the cycloid by experimenting with the shape of the 

chops and by subsequent analysis. But as we will see that begs one or two questions. The often accepted 

authority  Britten’s 8  is also apt to be confusing. Referring to Huygens it says, “it was not until then [1658] 

that he was able to discover the formula which determines its performance. That is,  that the time occupied 

by the swing of a pendulum varies as the square root of  the length of its arc and inversely as the force of 

gravity. This irregularity is known as circular error”.   Even the most promising of texts appears to contain 

unfortunate phrases. Thus Plomp 9 says,  “…we know the exact date on which Huygens constructed his first 

pendulum clock : December 25th 1656.”  But, anyone who has  ever separated the plates of a clock knows 

that a clock is not built in a day. Should Plomp’s apparent lack of precision cast doubt on the rest of his text? 

There are many published biographical essays on the life and work of Christiaan Huygens. 10  They differ 

frequently over significant details and are weak on technicalities. The UK Science Museum world wide web 

site  is disappointingly imprecise. 11 

The confusion is assisted by Huygens’ having published two works on the subject with similar titles. 

Horologium of 1658 and Horologium Oscillatorium 12 of 1673.  In Horologium   Huygens describes a 

pendulum controlled clock, not his first clock, to their Lordships the Governors of Holland with a view to 

establishing his priority of invention.13 In contrast, Horologium Oscillatorium is a significant work in 

applied mathematics. It is subtitled Geometrical Demonstration Concerning the Motion of Pendula as 

Applied to Clocks. Huygens’ biographer C.D. Andriesse tells us that large proportion of Horologium 

Oscillatorium  was actually written during 1660. 14 The work was published  thirteen years later,  

So, although there are already very much more scholarly writings   than mine on the works of Huygens, 

none I know of give satisfactory answers to these questions:  

When, if ever, were cycloidal chops first fitted for the purpose of making the pendulum  

isochronous?   

If chops were fitted before that, what was their purpose?  

In this paper I have tried to lay out the sequence of Huygens’ endeavours to show what was chicken and 

what was egg.  

SOME PRELIMINARIES 

The C16th Pendulum  

The pendulum was established in science well before Huygens arrived.  Around 1602, Galileo 15 had 

made the experimentally based hypothesis that the time of swing was constant according to the standards of 

measurement that were then applied for astronomy. 16  Within wide limits, the time for a complete swing  

was not affected by the size or material of the bob, provided that the rod or cord was the same length. 

Galileo had determined experimentally that the time of swing was inversely proportional to the square root 

of the length of the pendulum. 17  

Although  the pendulums of Galileo’s  experiments would have been anisochronous, Galileo clearly 
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believed the pendulum was isochronous for he put a great deal of effort into  trying to explain from his 

theory of motion why this should be so.   

Because Galileo was working with pendulums four or five metres long, space requirements probably 

forced him to use small amplitudes of swing around 15° for which , as shown in Appendix A, the departure 

from isochronism is small.  Nevertheless, had Galileo been able to compare the times of swing of  

pendulums freely swinging simultaneously, at constant 15° and 10° amplitude, but being otherwise identical, 

he would have observed something like Figure 4. Ten minutes of observation would have been adequate to 

detect the difference between the times of swing and to reveal the general anisochronism of the pendulum  

 Figure 4 Comparison of Freely Swinging Pendulums - Two Different but Constant Amplitudes 

 

However, the amplitude of a real pendulum decays because of friction. Galileo could have maintained the 

swing of a pendulum by impulsing it with his hand, but would have been loathe to do so  because of the 

implication for the deductions from the experiment. Thus Galileo  was dealing with pendulums in which the 

amplitude continuously decayed.  With long pendulums used by Galileo, having wooden bobs, the 

amplitude of swing becomes very small quite quickly. The amplitude decayed to negligible, it seems, in 

about seven minutes.18  Correspondingly,  the anisochronism becomes negligible for most of the duration of 

the experiment and  is undetectable. The mathematical background to this behaviour is set out in Appendix 

A and is summarised in equation A10. Figure 5 illustrates for two long pendulums swinging together, with 

initial amplitudes of 15° and 20°. 



 4 

 

 

Figure 5  Comparison of Decaying Pendulums - Two Different Initial Amplitudes 

 

That is  a plausible explanations of Galileo’s not noticing the fundamental anisochronism of the 

pendulum. 

Galileo’s experiments did not require a time standard to measure the performance of the trial pendulum. 

Four out of five of Galileo’s propositions about pendulums were based on observing two pendulums of 

different sorts running simultaneously. The other related to conservation of energy. The need to calibrate the 

pendulum arose when the pendulum itself began to be used as a time standard. Galileo proposed that 

accurate measurement of time intervals for the purpose of astronomy  could be achieved by counting the 

swings of a calibrated pendulum.  By extension, the principle could potentially be extended to finding 

longitude and Galileo proposed such a scheme in 1636.  

There was a sizeable reward for anyone demonstrating a method of “finding the longitude”.  As early as 

1598, King Philip III of Spain had offered a life pension of 2000 ducats, a perpetual pension of 6000 ducats 

and an immediate grant of 1000 ducats.  Huygens  wrote very definitely about  a considerable sum offered 

by the Government of Holland. 19   

Even as late as 1639, Galileo did not have a satisfactory explanation connecting the behaviour of the 

pendulum to his law of falling due to gravity.   In 1638,  Baliani  derived Galileo’s law of fall from the  

behaviour of the pendulum . He told Galileo, who was then able to  invert the derivation,  but was unable to 

publish the result.  Baliani revised and substantially extended  this work in 1646. 20  

By the 1640s, the notion of the rigid or “compound” pendulum was  well established, so much so that in 

1647 the relationship of its time of swing to that of the simple pendulum was the subject of a war of words 

between mathematicians Roberval and Descartes.  

It had become the common practice of astronomers to estimate the elapse of time by counting the swings 
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of a weight suspended from a light chain and impelled from time to time by the hand of an assistant.  

A new unit of time measurement had evolved, the second sexagesimal  division of the hour,  or as we 

know it the “second”. In April 1642, the astronomer Riccioli and nine associates kept a “seconds pendulum 

going  for 24 hours, counting 87,998 oscillations.”  21 What is more, Riccioli repeated this experiment twice 

in the following months.   

Huygens’ invention of 1656 was intended to automate this procedure by adapting  the existing common 

clockwork mechanism so as to count the swings of a pendulum and also sustain the motion of the pendulum  

in the presence of dissipative forces.22  He too hoped that his invention would permit the “finding of the 

longitude” 23  

Shortly before his death in January 1641,  Galileo designed in his head, for he was by then blind, a 

method of harnessing the pendulum to a clock.  Galileo’s son Vincenzio and associate Vincenzo Viviani 

were unable to bring the design to fruition before Vincenzio died in May 1649. 24  So  in both the  question 

of keeping time and the science of mechanics, Huygens took up  the reins from Galileo. 

The Role of Marin Mersenne 

Marin Mersenne  (1588-1648)  was  a French theologian, priest, mathematician, scientist and 

philosopher. From 1620 onwards he corresponded or met with some eighty, perhaps all,  of the eminent 

mathematicians scientists and philosophers  of the time. He acted as a clearing house for their work.  In 

1633, 1634 and 1639 he translated Galileo’s work on mechanics from Italian into French and it is largely 

through Mersenne that Galileo’s mechanics became known  outside Italy.  In 1646,  at the age of 17 and 

while still at university, Huygens wrote to Mersenne about Galileo. 25 

Mersenne did some experiments of his own using a pendulum to keep time and he confirmed that the  

time of swing was inversely proportional to the square root of the length of the pendulum.  In 1644, he may 

have experimentally confirmed the length of the  pendulum beating seconds.  Mersenne used the pendulum 

for measuring time intervals and he recommended this method to Huygens 26.  

The Cycloid 

The cycloid, the path followed by a point on the circumference of a circle as that circle rolls along a 

straight line.  

The cycloid was perhaps first investigated by Nicolaus de Cusa (Cardinal Cusanus) in 1451. 

Subsequently its properties attracted the interest of many of the world’s great mathematicians and physicist - 

Bouvelles, Roberval, Galileo, Toricelli,  Descarte, the Bernoullis, Fermat,  Leibnitz, Wren and Pascal.  

Through the offices of Marin Mersenne, Huygens would have been aware of most of the work done on 

the cycloid. He himself  had worked on the curve, and in 1658 and 1659 Pascal 27 acknowledged Huygens’ 

achievement. By 1665, the cycloid was probably the most studied curve in history. 

Dating Events in C17th  

There is a potential ambiguity of twelve months in interpreting the dates given for any event in the story 

of Huygens and his contemporaries. This arises from changes made at various times to the choice of the 

month that began the year. In England and many European countries the year began  on 25th March, so that 

January, February and March in, say, 1580  came  after December  1580.   This practice changed, and from 
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1582, the change was often, but not always, concurrent with the adoption of the Gregorian calendar, a 

process which continued sporadically for the next two hundred and more years.  England changed in January 

1752 (NewStyle). 

 Various parts of the Netherlands changed to the Gregorian calendar in 1583 or 1700/01 according to 

religious influences.  Huygens’ town of Zuilichem is in Gelderland  which adopted the Gregorian calendar 

in January 1700. Huygen lived in Paris from 1665 to 1673.  In France, as in Italy and Germany, the various 

localities also changed  to the Gregorian calendar at different times.  The change to the choice of  the month 

to start the year seems to have happened rather more uniformly.  Most of the part of continental Europe we 

are interested in seems to have adopted 1 January as the start of the new year before 1600. 

Nevertheless, a letter or other paper dated between  1 January and 25 March may have been written  

twelve months earlier or later than a first glance would suggest. 

ESTABLISHING THE PRECURSORS 

Precursors to the Cycloidal Chops 

There are four essential precursors to clocks being designed with cycloidal chops to make their 

pendulums isochronous.   A  problem caused by anisochronism must have been recognised.  The cycloid 

must have been identified as a tautochrone 28. There must have been a method of determining exactly which 

cycloid was required for a particular pendulum. It must have been shown that the evolute  of the cycloid is  

itself a cycloid. 

To establish the chronology we should turn to primary documents.  The closest we have are translations 

of Horologium Oscillatorium and Huygens’ letters and papers that document most of his scientific work, 

now collected in twenty two volumes and known as  the Oeuvres Complètes de Christiaan Huygens. 29  

A  Problem Caused By Anisochronism ? 

There is no doubt that Huygens knew before Horologium  was written, which was before the publication 

date of September 1658, that the pendulum was anisochronous. Huygens and others had been using the 

pendulum to measure time intervals in astronomy for several years.  In Horologium, Huygens  writes  “It is 

asserted with truth that wide and narrow oscillations of the same pendulum are not traversed in absolutely 

equal time, but that the larger arcs take a little longer, which it is possible to demonstrate by a simple 

experiment. For if two pendulums, equal in weight and length, are released at the same time, one far from 

the perpendicular, the other only a little deflected, it will be perceived that they are not long in unison, but 

that of which the swings are smaller outstrips the other.” 30 

Figure 6 illustrates such an experiment with two freely swinging pendulums nominally beating seconds.  

After six minutes, one pendulum is 0.4 of a swing ahead of the other - nearly in opposite phase. 
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Figure 6 Comparison of Decaying Pendulums - Two Different Initial Amplitudes 

Was this a problem?   Huygens did not really think so  but intended to follow it up.  “Yet as I have said, 

my time piece is less likely to an inequality of this kind, because all the vibrations are of equal amplitude.  

Nevertheless, it remains not entirely free from inequalities, although these are very tiny, and as is needful, I 

intend to pursue the matter.” 31  Indeed he had already been doing so for quite some time There is a record of 

his experimenting with chops in May and June of 1657.32 

So this precursor, observing the anisochronism, was established by mid 1657, if not earlier. 

The Cycloid Identified As A Tautochrone 

Some months after the death of Coster, and three years after constructing his first clock, Huygens set out 

to actually analyse the motion of the simple pendulum.  The description of this work is not part of 

Horologium Oscillatorium . It is in a self contained paper entitled  On Determination of the Period of a 

Simple Pendulum 33 dated December 1659 34.  By geometrically based argument, and calling on his earlier 

work 35 on centrifugal force, Huygens showed that the period of the pendulum was a function of only the 

length of the pendulum.  This of course implied that the pendulum as analysed was isochronous. In the 

analysis, however, he had used an approximation  which was not true for all angles of swing when the bob 

swung in a circle.  

Huygens knew that in practice the period of the pendulum also depended on the amplitude of swing. He 

then asked himself what  path the pendulum would have to follow for the approximation to be true for all 

angles of swing. That is, what path would make the pendulum isochronous. He found that the requisite curve 

was one in which  the tangent would be drawn by exactly the same method that was then used for drawing 

the tangent to a cycloid. 36 This cycloid would have a vertical axis equal to half the length of the pendulum. 

This result of course applied only to the simple pendulum. A derivation using modern methods is set out in 

Appendix B. 

Thus the second necessary precursor was established early in 1660. 
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Huygens then set about the inverse problem - proving that the cycloid  was a tautochrone. He achieved 

this by a lengthy argument that became Part II of Horologium Oscillatorium with the conclusion as 

Proposition XXV.    

The Evolute  Of The Cycloid Is A Cycloid 

After discovering that the isochronous path was a cycloid, the obvious next step for Huygens was to 

determine what shape his chops should be so that, as the pendulum suspension thread wrapped and 

unwrapped  around them,  the centre of the bob would describe a cycloid. In other words, he set out to find 

the evolute of the cycloid.   

He had previously dealt with strings  carrying weights and unwrapping around cylinders in his 

investigation of centrifugal force. Huygens work notes for 20 December 1659 show him numerically 

correlating the coordinates of a cycloid  with the angular displacement of the pendulum string37. Oeuvres 

Complètes  shows us that by Summer 1660 38 Huygens had determined that the chops should be semi-

cycloids, congruent with the intended path of the pendulum bob. Huygens conveyed his conclusion to the 

senior scientists of the day, so that by December 1661 Huygens’ cycloidal pendulum was actually being 

investigated  as a means of establishing a standard of length. 39 The conclusion was actually published much 

later as Proposition VI of Part III of Horologium Oscillatorium., 

Thus it was not until  the European Summer of 1660 that all the prerequisites  for designing and fitting 

cycloidal chops were satisfied.  

HUYGENS’ EARLY CLOCKS 

The First Clock 

The first announcement that Huygens had invented a new more accurate clock was  in a letter 40 he wrote 

to Professor van Schooten on 12 January 1657.  Huygen is not specific in this letter about the date he 

finished the clock.. 

However, we do know that on 26 December 1657 Huygens wrote to to Ismael Boulliau. 41 He was 

responding to  a  letter from Boulliau telling Huygens that The Grand Duke of Tuscany was reputed to have 

a clock just like that which Huygens had shown Boulliau in April 1657. Huygens prefaced his reply by 

noting that it was just a year and a day since he had made the first model of his clock.42  From this we can 

infer that Huygens had a pendulum clock of some sort, working or not, on 25 December 1656. We can also 

infer that by April 1657, Huygen, perhaps with Coster’s help, had a clock that worked well enough to be 

worth copying. 

In the same letter to Boulliau,  Huygens  seemed to foreshadow the imminent conversion of a tower clock 

to pendulum control in a nearby town. This was to have a pendulum  about 21 pied long weighing 40 or fifty 

livres. Perhaps this was the tower clock at Scheverlingh which Coster and Huygens modified and  which 

Huygens later described to Jean Chapelain in a letter dated 28 March 1658 43 just before they received a 

contract for a similar job at Utrech 44. That  clock had a rigid pendulum 24 pied long and weighing 50 livre.  

The suspension cords for the pendulum were six pouce long.   

The nature of Huygens’ modification was shown by  a sketch in the letter to Chapelain which I have 

copied here as Fig 7.  We note that there are no chops in the sketch.  The particular relevance of this sketch 

is that Huygens said it demonstrated the principle of his pendulum clocks. 
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Fig 7 Huygens’ Sketch of 28 March 1558  

This leads to the inference that Huygens produced his first pendulum controlled clock by modifying an 

existing clock - possibly a spring driven table clock of the sort which was common in early C17th. Now this 

is something that might have been accomplished in one day as Plomp says . This would have involved 

standing the table clock on its edge with the corresponding transformation shown in Figure  8. A table clock 

verge escapement of this vintage would probably have had a fifteen tooth crown wheel. As Table 1 of 

Appendix C shows, this would require a pendulum swinging about 30° either side of centre.  (The bob of a 6 

inch pendulum would have swung 3 inches either side of centre.)  Such a pendulum would be particularly 

susceptible to anisochronism - as demonstrated in Appendix A. 

 

 

Fig 8 Huygens’ Modification of 25th 

December 1656  - Conjectural Schematic 

 



Huygens has left us no explanation of why he introduced the crutch.  We can speculate firstly that he was 

concerned that, if he hung the pendulum directly from the verge arbour, the pivot  and balance-cock would 

be taking lateral loads for which they were not designed.. In the course of the modification, Huygens would 

have quickly realised that  if the pendulum string was to remain straight while being impulsed by the 

escapement, either the pendulum should be impulsed near the bob or the bob needed to be fairly heavy - 

perhaps heavier than could be sustained swinging through 30°.  Once he realised that a rigid pendulum rod 

was needed to accept impulse torque or lateral impulse force,  the crutch could be shortened. 45 With the 

pendulum suspended from well above the verge arbor, this would have given the opportunity for the crutch 

to act to reduce the pendulum arc necessary for the escapement to work as shown in Figure 9. On the other 

hand, Huygens may have used the crutch to implement a lever pair  hat could be used to match the torque 

supplied by the spring and escapement to the torque needed by the pendulum. Huygens would perhaps 

reluctantly have accepted the increased slip caused by the offset. 

 

 

Offset/Crutch 

Length 

Theta at 

Alpha=30 

degrees 

Slip/Crutch 

Length 

percent 

1.0 15.0 7 

0.9 15.8 6 

0.8 16.7 6 

0.7 17.7 6 

0.6 18.8 5 

0.5 20.1 5 

0.4 21.6 4 

0.3 23.2 3 

0.2 25.1 2 

0.1 27.4 1 

0.0 30.0 0 

 

Fig 9 Angular and Slip Effects  of  Crutch 

 

I remain curious about why we find no contemporary record of Huygens’ modification and testing or 

calibration of this first clock nor any announcement to their Lordships the Governors of Holland? Perhaps 

the clock did not work at all well. That would not be surprising. 

I find it a compelling notion that somewhere in the chronology there must have been a working pendulum 

clock with only one hand and no chops. Until such a clock had been built and run,  Huygens  would not have 

appreciated that he had sufficient precision to justify two hands and also a problem with anisochronism.  

When then did the chops and the minute hand appear? 

Coster’s Clock 

The next thing we know is that Huygens took his ideas and presumably his first effort to an established 

clockmaker Salomon Hendrikszoon Coster and surveyor and clockmaker Johan van Kal. 46  We do not know 

exactly when or why.  

There are two versions of what happenedthen.  Britten’s Old Clocks and Watches and their Makers47  has 
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it that “He [Huygens] assigned his rights in the invention to Coster who submitted it to the States-General 

and was granted a patent ( Octroo) for twenty one years from 16 June 1657.”  Eminent Dutch clock collector 

and author J.L. Sellink  writes48 “It is known however that Huygens obtained a patent for his discovery and 

that Salomon Coster from The Hague obtained the licence to manufacture and sell clocks built on this 

principle for 21 years.  After Coster’s death in 1659 the licence passed 49 to Claude Pascal and Severin 

Oosterwijck. It is now known …   that Huygens request to patent his method in Paris was refused.”   

So who was granted the patent?  We ask this question in seeking to discover the inventor because, under 

today’s laws, the industrial right, the monopoly, is granted by the state to the person who first had the idea 

and made a prototype. The patentee is the inventor. The patentee then licences one or more  manufacturers.  

However, we have little knowledge of the state of industrial rights law in the United Netherlands in 1657 

- if indeed there was any.  For comparison, the Monopoly Act in England became law in 1642, but I 

understand that the Patent Law in France was not enacted until 1791. 

Plomp50 says “ …the States General of the United Netherlands granted Salomon Coster the exclusive 

right (‘octroy’ or ‘privilege’) for a period of 21 years to make and sell clocks in the Netherlands constructed 

according to the invention of  Christiaan Huygens”  Plomp’s authority for this is an editorial note in Oeuvres 

Complètes 51. 

Documents52 associated with the granting of the privilege  to Coster show that the document was actually 

issued to Coster and that  it covered “[new  inventions in horology which had been developed by Christiaan 

Huygen and shaped in the hands of Salomon Coster and Johan van Kal, clockmakers]”. 

If there were ever a  technical description of the invention which Coster was allowed to duplicate it has 

been lost.  

Now the Rijksmuseum voor de Geschiedenis der Natuurwetenschapen has, in Leiden, a clock in the style 

known as a Hague clock which has chops and which is labelled “Salomon Coster Haghe met privilege 1657” 

and we might therefore infer that it was built either in 1657 or to the design standard of 1657. However, met 

privilege 1657 may indicate the date of the licence not the date of manufacture and not the design standard. 

Plomp’s survey of the Dutch pendulum clocks of the period 53  records no surviving clock labelled met 

privilege 1658 or  met privilege 1659.  54 which would reveal the labelling practices of the day. 

Oeuvres Complètes Vol XVII, published in 1932, 55  describes a  Coster pendulum clock, owned by the 

Rijksmuseum  and located at the Natural Science museum in Leiden. Comparison of recent photographs 

with those in Oeuvres Complètes confirm this is the clock in the previous paragraph..  It has chops, a 

spherical screw-adjusted pendulum bob, motion work for two hands and photographs allow one easily to 

believe that it has  stop-work on the mainspring barrel - although stop work is not mentioned in the textual 

description which is otherwise quite detailed.   

At the conclusion to that article, the author remarks ” We have found in the Hague a second example of 

the same clock.  [It has the same train count and is other wise identical except that it has no chops, the 

Coster cartouche is not dated, the pendulum bob is a copper disc without screw adjustment.] “. 

The Science Museum in London and the Time Museum also each have a similar clock and say that seven 

such clocks are known to have survived into the twentieth century.  At least one of them, already mentioned, 

does not have chops. The chops on the clock at Leyden are not cycloidal and are clearly an after thought.. 

The clock has a remnant of the pendulum suspension that would have been used before chops were 

introduced. The clock in the Science Museum has no such remnant.  One might well think that the basis of 

the Leiden clock predates the first use of chops. These  clocks throw  light on  the configuration of the  clock 

of the privilege, but the true origin of the chops remains in the dark. 
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Incidentally, buried in this somewhere is the invention of coaxial motion work for hours and minutes. 

So we are left with the simple fact that some time before 16 June 1657 Huygens, Coster and van Call 

produced a working pendulum controlled clock. We do not really know what it looked like. Distribution of 

credit between Huygens and Coster remains unresolved.  

These events, though,  suggest that Coster may have contributed substantially to the design of the 

working pendulum clock. 

While this first Coster clock just may have had chops, they would not have been cycloidal, other than by 

coincidence. 

 The Clock of Horologium. 

In Horologium of September 1658 Huygens documented the design of a pendulum controlled clock with 

a view to establishing his priority of invention.  The design is illustrated in Figure 10. 

The text and the design show that by this date Huygen was certain that the propensity for errors due to the 

anisochronous pendulum was greater for pendulums with larger amplitudes. Huygens  wrote “With  large 

arcs the swings take longer, in the way I have explained, therefore some inequalities in the motion of a 

timepiece exist from this cause …”   As can be seen from the drawing, Huygens went to some trouble to 

reduce the amplitude of the pendulum while maintaining sufficient amplitude of the verge to release the 

escapement crown wheel.  Huygens had introduced a pirouette , a contrate and pinion pair between the 

crutch and the verge. The crutch is short  and the pendulum pivot is some distance above the crutch pivot.     

This design had an unusual  dial layout - a  minute dial with concentric seconds hand, showing hours on a 

subsidiary dial.  

There is more to be learned from the text.  Completing the quotation above, Huygen wrote  “ With  large 

arcs the swings take longer, in the way I have explained, therefore some inequalities in the motion of a 

timepiece exist from this cause, and, although it may seem to be negligible, when the clocks were so 

constructed that the movement of the pendulum was somewhat greater [than at  present]  I have used an 

appliance  as a remedy for this also.”  
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Figure 10 Clock of Horologium 

As we know Huygens had already experimented with chops, I think we might fairly infer that this 

appliance was in fact a pair of chops intended to increase the speed of the pendulum in the longer arcs, but, 

there is no direct evidence on this matter in Horologium .  

We may similarly infer that Huygens was satisfied that the chops were not working and that that he and 

Coster had discontinued their use by September 1658.  For Huygens goes on to say, “ At the present time, 

certainly, this method is not the cure.”  

The drawing in Figure 10 seems to be a a sketch of the concept rather than a practicable clock design. For 

example, there is nothing to prevent the pirouette contrate wheel from moving out of mesh with its pinion; 

and the contrate wheel would have to be fitted to its arbor after the arbor was installed in the backplate. It 

seems quite possible that this clock never progressed beyond the design stage. However, Horologium may 

be read to imply that Huygens experimented with this style of clock. “Therefore, by rendering all the swings 

short,  … individual times are distinguished by no remarkable difference.   … doubling the driving weight 

does not thereby accelerate the movement of the pendulum or alter the working of the time piece, which was 

not so in all others hitherto in use.”   Huygens was probably not aware of the extent to which the recoil of 

the verge escapement  masked the effect of changing the driving torque. 

Horologium also shows that before 1658 Huygens was well aware of the causes of varying efficiency in 

the clock train and the consequences for the rate of the clock. He would have been aware of the effect of lost 
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motion ( back lash) and additional friction in the contrate and pinion set.  Perhaps it was for that reason that 

Huygens and Coster either did not take up or did not continue use of the pirouette in domestic clocks. 

In any case, browsing through Huygens’ work notes, we find evidence of a change or contemplated 

change back to chops in November 1658 56 and then in June and  October 1659, 57 and  that in December 

1659 he was attempting to calibrate a pair of chops experimentally,58 and describing his discovery to his old 

mathematics tutor Prof van Schooten of Leiden. 59 

The Clock of Horolgium Oscillatorium  

The clock design in Horologium Oscillatorium  of 1673  does not show the improvements over the design 

of 1658 that one might expect in thirteen years, except that we see Huygens has returned to using chops.  

The explanation is that much of Horologium Oscillatorium was written well before the date of publication 

and the design probably originates from late in 1660. The crutch pivot coincides  approximately with the  

centre of swing of the pendulum. The crown wheel has 15 teeth and the amplitude of the pendulum would 

have been about 30°.   The design has an unusual dial layout. There are concentric hour and minute hands, 

but seconds are displayed by a rotating subsidiary dial. It has a rigid pendulum hanging from a bifilar 

suspension operating between chops. The chops, as drawn,  do not conform to the correct cycloidal shape , 

though that could be no more than a publishing convenience as there are other draughtsman’s errors in the 

drawing.   

 

Figure 11 The Clock in Horologium Oscillatorium  

Features of this drawing suggest that it too is a sketch of a concept rather than a working clock.    

 

THE LAST WORD 

Late in 1661 Huygens, for a second time, sought to determine theoretically the period of a rigid 

pendulum. ( The relevant work notes are dated August to November 1661 60)  This time he was successful. 
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But he deduced something else as well. When the work on the rigid body pendulum was published in Part 

IV of Horologium Oscillatorium, Huygens put it unequivocally, at Proposition XXIV,  “It is not possible to 

determine the centre of oscillation for pendula suspended between cycloids.”   The very reason this is true 

means that cycloidal chops do not provide an isochronous  path for a rigid body pendulum. This is  

explained in Appendix B. 

It is difficult to imagine that an intellect such as Huygens’. did not realize this immediately. In December 

1661 he had actually found that the isochronism was not quite perfect. 61 At the time, he attributed this to the 

elasticity of the suspension threads. One would expect that after December 1661 Huygens ought to have 

been dissatisfied with cycloidal chops for real pendulums. 62 Nevertheless, he persisted with chops  in his 

subsequent designs for sea clocks, sometimes using either a double fork crutch suggested by the Scotsman 

Bruce, or  a pivoted disc suspended from a light wire frame, which might avoid rigid body rotation..  

By the date the manuscript for Horologium Oscillatorium was written, Huygens had realised the 

implication of Proposition XXIV. He suggested the difficulty could be overcome by constructing the 

pendulum so that the rigid parts did not rotate. In reading Proposition XXIV one can almost sense Huygens’ 

discomfiture as, having advocated cycloidal chops, he tries to make light of this difficulty. I have not 

discovered when Huygens came to this realisation. 

 
Pendulum controlled by Crutch with Double Fork 

  OC VolXVII p166 

The logic is this: 

Either Huygens was very slow to realize that the imposssibility of determining the centre of 

oscillation for pendula suspended between cycloids also meant that cycloidal chops do not 

provide an isochronous  path for a rigid body pendulum. 

Or,  the clocks designed by Huygens after, say, 1662 did not have cycloidal chops but were intended 

to have experimentally shaped chops. 

Or Huygens had so much mental capital invested in the cycloid that he would not abandon it. 

There was no real need for the chops, cycloidal or otherwise, after the Clement/Knibb/Hooke invention of 

the anchor escapement in 1666.  By permiting the escape wheel to release with a much smaller movement of 
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the pallets and pendulum,  the anchor escapement  greatly relieved the susceptibility of pendulum clocks to 

errors caused by the anisochronous  pendulum. It might be thought curious that Huygens did not mention the 

anchor escapement in Horo;ogium Oscillatorium.  But in the end run the work is a dissertation in theoretical 

mechanics dating from 1660/61 rather than  a treatise on clockmaking in 1673.  

CONCLUSION 

The chronology of Christiaan Huygens, the pendulum and the cycloid may be summarised as follows. 

1656 25 Dec Huygens modifies table clock, replacing balance by pendulum and crutch 

1657  (Coster or van Call builds ?) pendulum controlled clock for Huygens 

   Huygens aware of anisochronism and that pendulum is more susceptible to 

anisochronism at large amplitudes of swing 

 May Huygens experiments with chops 

 June Coster granted licence to manufacture style of clock built for Huygen 

1658 Jan Apr  Tower clock at Scheverling and Utrech converted - no chops.  Huygens and Coster 

devise pirrouette mechanism 

 

 

   Huygens experiments with chops, is unable to make them work accurately 

1658 Sept Horologium published 

 Oct Nov Huygens experiments with chops, is still unable to make them work accurately 

1659  Coster dies 

1659 Dec Huygens again attemps to calibrate chops experimentally. 

Huygens analyses period of simple pendulum, shows that an isochronous path would 

be a cycloid, proves cycloid is a tautochrone 

1660 summer Huygens shows involute of cycloid is itself a cycloid 

   

1661 Aug to 

Nov 

Huygens analyses period of rigid pendulum notes that this cannot be done for  rigid 

body swing from a thread 

 Dec Observes cycloidal pendulum not perfectly isochronous 

1662 ?  Realizes cycloidal chops do not make rigid pendulum isochronous  

So we see that no clock made by Coster would have been deliberately made with cycloidal chops.   

There may only have been, say, an 18 month period between when Huygens deduced that a cycloid was 

the correct shape for the chops of a simple pendulum and when  he realised that the chops would not work 

for a pendulum with rigid elements. It seems quite possible that cycloidal chops were never actually fitted to 

clocks under Huygens’ directions outside that period. 

“Things are seldom what they seem. 

Skim milk masquerades as cream 

Turkeys strut in peacocks’ feathers. 

Very true. So they do.” 

© A.J.Emmerson, 

 Gaythorne, July 2004 

 Revised Jan 2005
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APPENDIX A 

DECAY AND ANISOCHRONISM 

Definitions 

A "simple pendulum" consists of a particle, with mass but no other dimensions, attached to a point fixed in 

space, by a taut string having fixed length, no stiffness, and no mass, so that the particle is constrained to 

revolve about this point, along a path which has a constant radius of curvature and is in a single plane 

parallel to the local gravitational field.  

In the jargon, a "compound pendulum" is a rigid body in which a point, other than the centre of mass, is 

fixed in space by a  pivot, so that the body may rotate about that pivot in a single plane parallel to the local 

gravitational field. The simple pendulum is in fact a special case of the compound pendulum and may be 

analysed by the same equations. 63 

In deriving the equations of motion of these idealised pendulums, it is usually assumed that the pendulum 

swings in a stationary frame of reference, that the gravitational field is uniform, that there are no other force 

fields, and that there are in particular no dissipative forces.  

Huygens’ pendulum  consisted of  a rigid bob and  rod having mass and suspended from the top of the 

rod by thread attached to a fixed point.  

 
Figure A1. Pendulum Idealisations 
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Simple Pendulum Compound Pendulum Huygens’ Pendulum 
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The usual notation is: 

h is the distance from the pivot axis to the centre of mass of the pendulum. 

M is the mass of the pendulum  

g is the acceleration due to gravity 

! is the angular displacement of the centre of mass from the rest position 

A is the amplitude of swing, the maximum value of !. 

I is the mass moment inertia of the pendulum about the pivot axis, and 

ko  is the radius of gyration of the pendulum about its centre of mass 

Time of Swing 

Using the method of rotational  dynamics originated in the late C18th  we observe that the applied torque 

is equal to the rate of change of angular momentum. We can then write: 

 ----------------------------------------------------- A1. 

An acceptably accurate solution to that differential equation leads to a time for a complete swing cycle of: 

      ---------- A2. 

For algebraic simplicity we adopt the usual approximation 

 

(This approximation incurs  an error in the estimation of the time of swing when compared with the 

complete infinite series. The error is 0.13% at an amplitude of swing near 45° )  

We can rewrite this time of swing as       _________________  A3. 

 And   may be regarded as the time of swing of an hypothetical isochronous  pendulum .  

We note that    

    1.0386   @   45° 

    1.0043   @   15° 

    1.0005   @   5° 

    1.00002 @   1° 

 

The mechanism of a clock records the number of swings made by the pendulum. In a measurement 
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interval  D seconds long the number of swings made by the pendulum is given by 

      ---------------------------------------  A4. 

If two identical pendulums were set running at the same time with constant but different amplitudes, the 

difference in the number of swings in the trial duration would grow as already shown for example in 

Figure 4. Every time the difference in number of swings increased by one half, the pendulums would be seen 

to be out of phase with each other. In the case shown, the phase relationship would reverse about once every 

10minutes.. 

The implicit presumption is that it is possible to maintain the pendulums swinging at such large 

amplitudes for the duration of the experiment in the face of the dissipation of the pendulums’ energy. That is 

of course the job of the going train of the  clock. 

Sensitivity to Anisochronism - in a Clock 

The amplitude dependent component of the time of swing,   seconds per swing. is known as 

"circular error".64  In itself it is of no consequence. The length of the pendulum can be adjusted to give the 

right number of swings per day. 

The real problem is that changing the amplitude of swing also changes the time of swing.  

Differentiating equation  A3.  gives 

      ---------------------------------A 5.  

or,            

Thus an increase in the amplitude of swing increases the time of swing. The absolute effect is bigger 

when the time of swing, or the amplitude of swing, is already large.  

The reason that this type of error is so troublesome is that there are uncontrollable effects in a clock 

which act so as to vary the amplitude of swing.  The consequence of "circular error" or, more correctly, of 

the anisochronism, is that, by changing the amplitude, those effects change the time of swing of the 

pendulum. 

The influences at work are those  which determine the energy dissipated by the pendulum per unit time 

and those which replace that energy.  

It is possible to get a working idea of the effect on time of swing caused by variations in factors 

influencing the power absorbed from the pendulum.  

From considerations of the potential energy at the top of the swing, we can show that, for a simple 

pendulum with an angular amplitude of A each side, the energy of the pendulum is: 
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The change in that energy as the angular amplitude changes can be obtained by differentiating that 

expression  and gives: 

      ---------------------------------------   A6. 

The actual total power loss has been measured rather precisely for many pendulums. This is usually done 

by measuring the time taken for the arc of a swinging pendulum to diminish by a given proportion, say one 

half.. Mathematics, and the observation of real pendulums swinging freely, show that the amplitude changes 

by decaying with time very nearly as described by the following equation: 

 

Where: 

t is the time the pendulum has been swinging 

Ao is the amplitude at the beginning 

µ depends upon the resistance factors of the pendulum and its surroundings and is near 

enough to constant for small swings. 65 

The rate at which the angular amplitude changes can be found by differentiating that expression to 

give: 

            ie       --------------------------   A7. 

Now the rate of energy change is  and    so that from  A6 and  A7  the 

power loss for the freely swinging pendulum with a decaying amplitude is: 

     ---------------------------------     A8. 

Thus the power being absorbed depends non linearly on the amplitude of the swing, and on a 

combination of factors relating to the dynamics of the pendulum. Incidentally, it is not correct to infer from 

this equation that  the energy loss rate is proportional to  M. That is because µ  also depends on M.  

A pendulum will not continue to swing for ever if it keeps losing energy. The energy transferred to the 

universe outside the pendulum must be replaced.  It must be replaced at the same average rate as it is 

absorbed. For constant amplitude, the power supplied must be equal to the power being absorbed as given 

in  equation A8 .  

 Thus power supplied  is given by   

If the power supplied changes  the amplitude will change. Assuming that there is no asymmetry in the 

impulse which would itself change the time of swing:  
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from equation A 5       

So that     

   ie     

  

Now,     

So       

That is, the change in the time of swing consequent on a small change in input power is given by 

 

         ---------------  A9 

The trigonometric  component of this expression increases with A. The period of a  pendulum with 45° 

amplitude is about ten times more sensitive to  power change than  one with 15° amplitude. 

 

In a measurement interval  D seconds long the number of swings made by the pendulum is given by 

equation 4 

      

This number of course will change if the nett power input to the pendulum changes. 

  

but    and    

so      
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and      

Then  

So that the change in the number of swings made in a given duration, caused by a change in the power 

input ( or loss) is given by: 

 

 

Figure A2  

As Figure A2 shows,  if the initial amplitude were 15°,  a 10% loss of power to the pendulum would 

barely be noticeable  over the course of the day, whereas, with 45° amplitude, 10% power loss would cause 

a gain of three minutes per day. 

Sensitivity to Anisochronism - Freely Swinging Pendulum 

Equation A3   gives the time of swing of  a free pendulum as   

If the pendulum amplitude is continuously  decaying, then  
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So that at time t     subject to the approximations above 

In the interval of time from t to t+dt  the number of swings dN made by the pendulum will be    

thence          and, 

  

When t=0,  N=0,  so that   and thence 

 --------------------  A10  
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APPENDIX B 

MAKING THE PENDULUM  ISOCHRONOUS 

Huygens’ analytical approach to making the pendulum isochronous was to consider the motion of a 

particle moving along a plane curve in space under the influence of  gravity, as in Figure B1.  We can look 

at the problem in the same way using our now standard mathematical techniques which we have inherited 

from the late C17th. 

 

Fig B1 

Referring to Figure B1, in which s is the distance along the curve and ! is the angle between the tangent 

to the curve and the horizontal.  The motion will be a simple harmonic oscillation 66, and therefore 

isochronous if 

       B1 

Considering the change in displacement of the particle  and resolving the acceleration due to gravity 

along the path, the equation of motion is  

    

Comparing with equation B1, the motion will be simply harmonic if    

         

 that is if              

Thus if the motion were simply harmonic  we would have      B2 

Note that while this is a sufficient condition for isochronism it is not a necessary condition. There may be 
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some other path that is isochronous but not a simple harmonic motion. 

To examine what path the particle must follow for equation B2 to apply,  establish a Cartesian coordinate 

system as shown in Figure B2.   We wish to know how the x and y coordinates of the particle should vary as  

!   changes. 

 

Figure B2 

From an initial displacement s,  infinitesimally  displace the particle through ds, and denote the 

corresponding changes in x and y as dx and dy as again shown in Figure B2.  

Then: , , and, for the motion to be simple harmonic,   

Thus    and 

  

Integrating with respect to ! , and setting constants of integration so that x = y  = 0  at ! = 0 gives: 

  and        B3 

These are the equations of a cycloid with the cusps pointing upwards in which the rolling circle has 

radius , and has turned through 2!.  The radius of the rolling circle is not arbitrary.   

This derivation is applicable not only to a particle but also to the centre of mass of a rigid body of any 

shape. Under the action of a constant vertical force,  the motion of the centre of mass will be simply 

harmonic and therefore isochronous  if it follows a particular cycloidal path: 
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 because, on the particular cycloidal path    so that     and therefore 

 under a constant vertical force  ,  which is a sufficient condition for isochronism  

(where  is the instantaneous inclination of the path to the horizontal axis of the cycloid.) 

Huygens’ arrangement depended on two geometric facts: 

The involute of a cycloid is itself a cycloid, and, accordingly, the end of a  taut string unwrapping 

from a cycloidal chop will follow a cycloidal  path. 

 

The tangent to any involute is normal to the evolute  at their intersection  and thus  the taut string of 

Huygens’ pendulum was normal to the path of the centre of mass and the tension in it had no 

component along the path.  The acceleration along the path was then that due to the vertical gravity 

force  alone.  

 

 

Figure B3 Huygens Arrangement 

There is a third consequence of those facts.  Because the tangent to any involute is normal to the evolute  

at their intersection, Huygens’ taut string lies instantaneously along the radius of curvature of the path of the 

bob. If the path is to be that followed by the bob of a simple pendulum initially suspended a distance ho 

above the origin of the Cartesian coordinates then, when  , the radius of curvature  

By definition, curvature =  and consequently the radius of curvature   

For simple harmonic motion , from equation B2,  

so that for simple harmonic motion          B4 
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Substituting   when   in B4 leads to  and  from B3 the parametric equations of the 

cycloidal path for Huygens’ pendulum are then 

  and         B5 

and we note that the radius of the generating circle is  one quarter of the length of the pendulum string. 

This method of considering motion along the path using infinitesimal calculus was not available to 

Huygens who was working well before Newton devised  and published his methods. Huygens had available 

the notions of mechanics that became Newton’s first two laws of motion and the methods of analytical 

geometry. Generally speaking, geometrical methods do not permit the shape of a curve to be inferred from 

its other characteristics.  

Our keen eyed editor Bob Holstrom sent me a bookseller’s review of Traite de la Pendule a Cycloide  

which says that in about 1684 the author of the book P. Baert independently reached the same conclusions as 

Huygens  using different methods. 

In discovering that the isochronous pendulum needed the cycloid  Huygens was perhaps lucky. To 

emphasize this point, consider that the complementary problem, 67  that of finding the curve which was a 

brachistochrone,  required infinitesimal calculus and was not solved until 1697.  But, it was Huygens’ 

perspicacity which earned his luck.  

The Rigid Body Pendulum 

Huygens had  briefly investigated the rigid body pendulum in response to a request from Mersenne in 

1646. He was not able to achieve a result and dropped the inquiry68.  When Huygens  began to regulate the 

clocks using a supplementary weight sliding on the pendulum rod, the question of the rigid pendulum 

became more relevant.   

Huygens investigated the behaviour  of the rigid pendulum, under the heading “centre of oscillation”  an 

historical term of confusing meaning which persisted through the C20th. Without the assistance of the 

integral calculus, he identified,  and showed how to calculate, what we now know as the moment of inertia 

and centre of gravity and thereby determined the period of what we have come to call the compound 

pendulum. The relevant work notes are dated August to November 1661. 69  These notes became Part IV of 

Horologium Oscillatorium. 

Thus, although Huygens and his correspondents subsequently initiated the methods of rotational and rigid 

body dynamics, those methods were not available to Huygens in 1659 when he discovered the relevance of 

the cycloid.  The style of analysis above of course precludes consideration of a rigid pendulum.   

However, consider Huygens’ real pendulum as generalised in Figure B4. A rigid body, centre of mass G 

is pin jointed at another point A to a string  AO  fixed at O and unwrapping around a curved cheek OP.  The 

string is instantaneously tangential to the cheek at O’.  



 

    Figure B4 

 

Figure B5 

According to the definition of an involute, if G is to move along the involute to OP , then O’ A and G 

must always be colinear  as shown in Figure B5.  This means that the rigid body must continuously rotate to 

remain aligned with the string as it wraps and unwraps..  The rate of rotation  falls to zero and reverses at the 

end of each swing and is  elsewhere generally not constant.  To provide this acceleration the resultant of the 

forces acting on the body  must have a moment about G. 

 

Figure B6 

The forces acting on the body are Mg due to gravity and T the tension in the string as shown in Figure 

B6.   If  O’ A and G are colinear , as shown, these forces have no moment about G, the angular acceleration 

of the body is zero and the colinearity of O’ A G cannot be maintained.   

Thus no simple arrangement of a string wrapping around a cheek  will cause the centre of mass of the 

rigid body to follow the involute of the cheek.  1 

Huygens was well aware70 of this by the end of 1661. It seems likely that Huygens’ demurrer went 

unnoticed,  for the unqualified acceptance of the cycloidal path as isochronous went on in horological circles 

for some considerable time.  

                                                 

1  Unless A and G are coincident. That is, unless  the bob is suspended freely from a pin joint at its centre 

of mass. 
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If by some arrangement the centre of mass of a rigid body suspended from a string were persuaded to 

traverse a cycloid, we would have     as a property of any cycloid and thence 

 (where  k and   j  are constants). 

 

Figure B7 

Since, as we have shown, O’ A and G cannot remain colinear,  the forces on the rigid body will be as 

shown in Fig B7 The acceleration along the path will be given by: 

 

but   

    so that    

 and the motion is therefore  not simple harmonic. 

Thus, if a rigid body is suspended by a string and its centre of mass traverses a cycloid, the motion of the 

centre of mass will not be isochronous. 

There remains the possibility that, despite the centre of mass not following the involute of the cheek, 

there might be some shape of cheek which causes the motion to be isochronous.   

Other clockmakers have been seen to use curved chops to alter the swing of the pendulum notably Arnold 

and Harrison, suggesting that the principle might work after all. Closer examination of this case shows that 

in the long run Harrison used chops not to impart isochronism  by their shape, but to provide an adjustment 

mechanism to minimize the variation in rate caused by extraneous influences. 

In 1818 Benjamin Gompertz showed that the cycloid was not isochronous for a rigid pendulum and 

attempted to derive the correct isochronous path. He concluded that the objective could not be achieved by a 

pendulum’s suspension cord wrapping around cheeks.71.  His work appears to have gone unnoticed by 

horologists. 
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 Concerns Obscured 

Huygens demurrer about the cycloidal pendulum appears in Horologium Oscillatorium Part IV  

Proposition XXIV.72  As translated he says.” It is not possible to determine the centre of oscillation for 

pendula suspended between cycloids.”    

The centre of oscillation is an awkward concept at best. I find it confusing and unhelpful. If a rigid body 

is swinging as a pendulum about an axis of suspension in the body, the centre of oscillation of the body lies 

on a straight line extending from the the axis of suspension through the centre of mass. The distance of the 

centre of oscillation along this  line from the axis of suspension is equal to the length of a simple pendulum 

that has the same period as the swinging rigid body.  Calculating the position of the centre of oscillation 

entails knowing the centre of mass and the mass moment of inertia of the body. Most importantly from 

Huygens’ perspective, it permits one to find a two-mass system that is dynamically equivalent to the rigid 

body.  

The point relevant to Proposition XXIV is that if the rigid body is not swinging about a fixed axis in the 

body the centre of oscillation is not defined. When the pendulum is a  rigid body suspended by a string, the 

rigid body is not swinging about a fixed axis in the body. Thus, ” It is not possible to determine the centre of 

oscillation for pendula suspended between cycloids.” 

Proposition XXIV tells me that Huygens was aware that the string, bob, and rod did not swing as a rigid 

body. Not only did the point of suspension move along the chop, but the rod and string could not remain 

colinear. This meant that the bob would not follow the involute of the chops and the cycloids would not 

deliver isochronism.  The significance of Prop XXIV is obscured until one makes this connection. 

The most likely time for Huygens to have made these observations was when he was first working on the 

period of the compound pendulum created by the addition of a rating weight to the rod. That is 1661. On the 

other hand, Huygen continued to design clocks apparently with cycloidal chops.  Did he miss the 

connection? 

Even the inveterate critic English scientist Robert Hooke missed the point of the Proposition ( but not the 

physical facts.). After receiving a copy of Horologium Oscillatorium  in 1673,  he  observed that Huygens’ 

cycloidal pendulum was imperfect  saying  “ … supported partly by threads, ribbons, or other pliable 

material in order to be bending about the cycloidal cheeks, partly also by a stiff rod or plate, is subject to 

another great inequality namely to a bending at the place where the stiff and pliable parts are joined together. 

And this is not notional but very visible to the eye especially if the check be great that is given it by the 

watch parts [escapement]  so that all the pains for the adjustment after M. Zulichem we come short of the 

idea of perfection in the measure of time which his geometrical demonstrations would insinuate.”  Hooke, in 

short did not realise, or did not acknowledge, that Huygens had identified and recorded this problem years 

earlier.73 

Multiple Systems 

A pendulum with a flexible joint  in it, such as a rigid body suspended from a string (or from a leaf 

spring) does not fall within the definition of a compound pendulum. It is a multiple system, a system having 

two degrees of freedom.  Huygens’ real pendulum was a multiple system.  

In considering the behaviour of a multiple system we should first reconsider what constitutes 

isochronism. What aspect of isochronism is important in a clock.  We are concerned that the periods 

between successive occurrences of a specific geometric configuration  remain constant. In the conventional 

arrangement we consider successive passages of the crutch through the vertical.  We are concerned that this 
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period should remain constant, principally in the face of  changes of energy of the pendulum. In the rigid 

body pendulum suspended from a string,  constant energy is not the same as constant amplitude. To 

demonstrate this and to show the obstacles in the way of isochronism for real pendulums, consider the 

elementary constant energy system depicted in Figure B8.  

 
Figure B8 

A rigid body AG consisting of a light rod and a concentrated mass is suspended from A by a taut string 

fixed at O. For simplicity OA = AG = 12inches. 

This is a  standard problem  for which the equations of motion for small amplitudes are: 

 

 

where   

l being the length of the string, a the distance from A to the centre of mass, and k the radius of gyration of 

the rigid elements about G  

The equations of motion for this particular system, for small amplitudes  are: 

 

 

The constants B are proportional to A. The constants A are set by the initial amplitudes of   and .  

If the system is set running with  = , the string oscillates as shown in Figure B9 
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Figure B9 Oscillation of String 

 

Notice the cyclic variation in amplitude.  While it may not be so clear, the period of the oscillation is also 

varying. There is a 12% difference between the maximum and minimum times between successive passages 

through  = 0. 

If the system is set running with the body of the pendulum 8!° from vertical and the string vertical  ie 

= 0.15  and  = 0 ,  the string oscillates as shown in Figure B10  where the variation of amplitude and 

period is much more obvious.        

 
Figure B10 Oscillation of String 
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Figure B11 compares the variation of  the rotation of the string with the rotation of the rigid pendulum 

body .   This illustrates  the conclusion already reached that the string and the body do not remain aligned.            

 

Figure B11  

The motion of the centre of mass involves similar variation in amplitude and period as shown in FigB12. 

A crutch of the usual form would behave similarly. 
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Figure B12 Oscillation of Centre of Mass 

 

Under the same conditions, the  path followed by the centre of mass  is as shown in Figure B13.  Note 

that the vertical scale has been enlarged.  

 
Figure B13 

 

This behaviour is of the same kind that I referred to in Horological Science Newsletter a few years ago74.    

It is just conceivable that a crutch, or similar appliance, might restore the energy lost by the pendulum, 

apply a moment that maintains the rigid pendulum body colinear with the suspension string and do this with 

a force  having a component along the path of the centre of mass proportional to the displacement. This 

would be a  very clever or very fortunate design. 
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APPENDIX C 

GEOMETRY OF THE VERGE AND CROWN WHEEL ESCAPEMENT 

 

 

Figure C1 Figure C2 

 

  Escapement at the Instant of Release. 

The diagrams show, in elevation and plan,  an advancing tooth on one side of the crown wheel  (nearer to 

the reader) about to  lift the verge pallet clear of the tooth tip and the corresponding tooth on the other side 

of the wheel about to drop onto the other pallet.   

The plane containing the axis of the crown wheel and the axis of the verge is taken as a datum plane.  

The angle between the pallets is "    

The angular position of the pallet at release is #    

The travel or displacement of the axis of symmetry of the pallets  from the datum is $ .   

The clearance angle corresponding to the drop is  %  

The lateral displacement of the tip of the tooth at release is  xr  

The lateral displacement of the tip of the tooth at drop  is  xd 

The crown wheel has N teeth 

 

We wish to know the angle of swing at release in terms of the design parameters " , h, r and %  
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From Figure C1 :  

                 C1 

There is however a constraint on the free choice of  ! , h, and  r .  There is a requirement that the angle of 

drop "  must be positive as shown.               

From Figure C1 :   ,    (that is  , )  

      and     

Whence   and      C2 

In the symmetrical layout usually adopted, the crown wheel must have an odd number of teeth. Thus the 

angular distance between the tip of a tooth and the tip of the tooth closest to diametrically  opposite is 

&+!tooth pitch.  Consequently, in Figure C2, 

    

Also from Figure C2,     

Thus for N'15 the angles ! are small  so that : 

         

Substituting from C2 gives    
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We may reasonably anticipate that  is small so that:      

        

But   and thus    

or       

that is       

Whence         C3 

But    so that      C4 

Thus the requirement is:   and    C5 

The requirement  can be satisfied by pre setting a value for drop. The practicalities of construction 

suggest that drop should be expressed as a fraction of the crown wheel tooth pitch.   If D is the angular drop 

of the crown wheel, , for small ,  so that   

  So that     

And thus       

Substituting in C5 gives       C6 

 

Transforming  and collecting terms in C6  gives 

          C7 
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But             C1 

There are two approaches to the design of the escapement. 

Adding C1 and C7 yields    

and this prescribes     

Alternatively: 

Subtracting  C1 from C7 yields  

ie       

resulting in      

These are  the characteristic equations for the escapement. They are accurate only when N' 15  and 

is small . The design criteria for the escapement include  or the crown wheel will run free. 

 

Table C1 shows the values of  the angle of swing to release for various pallet angles  using  practicable 

values for the other escapement parameters. 

Pallets Included 

Angle  

 Angle of Swing at           

f  degrees 

Release  

b degrees          N=15                        N=29  

 r  f r f 

70 3.0 40 1.7 29 

80 3.1 36 1.8 26 

90 3.3 32 1.9 22 

100 3.4 27 2.0 18 

110 3.5 23 2.2 15 

For:   R=15mm, h=0.75mm and k=0.1 

Table C1 Verge Escapement , Angle of Swing at Release  
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E.L. The Suspended Foliot and New Light on Early Pendulum Clocks, in Antiquarian Horology June 

1981 

3  Horological Journal,    News - Huygens not Isochronous , British Horologcal Institute,  Upton UK,  

September 1999 
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. 
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1657”  which perhaps  means no more than that it was built after the grant of license and patent in  

June 1657 and no later than end of 1659 when  Coster died.  

 Plomp 1979 p14 describes a similar clock seen in  that museum in 1923,  but says it has been  

missing from the museum since the 1930s.. 

5  Good R.  Britten’s Watch and Clockmakers Handbook Dictionary and Guide 16th ed , Bloomsbury 

Books, London, 1987, p242 

6  Haswell J.E, Horology, Chapman and Hall Ltd, London, 1937 
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9  Plomp R, Spring-driven Dutch Clocks 1657 -1710, Interbook International BV, Schiedam, 1979, p11 

10  For example  Christian Huygens (1629-1695) in Rouse Ball , A Short Account of the History of 

Mathematics  4th ed 1908;  and Andriesse C.D, Christian Huygens, Albin Michel 1998.  The most 

reliable works seem to be those of H.J.M. Bos  R.J. Blackwell and M.S. Mahoney. And 

Joelle G. Yoder, Unrolling Time, Christiaan Huygens and the Mathematization of Nature, 

Cambridge, 1988, ISBN 0521524814  has been commended to me by Paul Middents. I am grateful to 

Paul Middents for drawing my attention to more than a few important references and for his  detailed 

review of aspects of this paper. 

11  www.sciencemuseum.org.uk/on-line/huygens 

12  Horologium Oscillatorium Sive  de Motu Pendulorum ad Horlogia Aptato Demonstrationes 
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Geometrica,  Paris 1673 

13  Edwards  E.L. trans,  Horologium by Christiaan Huygens 1658, in Antiquarian Horology December 

1970 p35 et seq  

14  Andriesse C.D,   Christian Huygens,  Albin Michel, 1998 

15  A facsimile/hypertext hybrid of  Galileo’s notes on motion are available through the Max Plank 

Institute for the History of Science at <http:www.mpiwg-berlin.mpg.de> 

16  Galileo’s  original legendary observations were probably of “pendulums”  swinging with an 

amplitude of  perhaps  20° at most. His first observation would have been that no matter what the 

amplitude, the times of swing of the cathedral lamps were the same.  (He had no need of his pulse to 
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17  These propositions appear in Galileo’s Discourses and Mathematical Demonstration Concerning 

Two New Sciences, dated 1638 . However, the experiments were performed some thirty years 
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20  Büttner, Damerow and Renn, Traces of an Invisible Giant: Shared Knowledge in Galileo’s 
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 Clearly there is a discrepancy of terminology in this report. A seconds pendulum “beats seconds”  
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22   In Horologium,  Huygens specifically states the invention was to improve on contemporary tiresome 

counting of the excursions of a pendulum.  Edwardes L.E op cit  p43   
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 Oeuvres Complètes Vol II p 5  12 January 1657 

Oeuvres Complètes  Vol II pp 7-8 Letter 370, 1  February 1657  

Oeuvres Complètes Vol XII p8 undated 
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27  Blackwell R.J, trans  Christiaan Huygens’ The Pendulum Clock or Geometrical Demonstration 

Concerning the Motion of Pendula as Applied to Clocks (Horologium Oscillatorium)  Iowa State 
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40  Oeuvres Complètes Vol II p5 Letter363 12 Jan57. 
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44  Oeuvres Complètes Vol XVII  p77 
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49  On the contrary, Oeuvres Complètes Vol 3  Letter 704 of 1 Jan 1660 Note 2 has it that after Coster’s 
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